Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.datasets.load_breast_cancer
```python sklearn.datasets.load_breast_cancer(*, return_X_y=False, as_frame=False) ``` [[源码]](h
-
sklearn.metrics.consensus_score
```python sklearn.metrics.consensus_score(a, b, *, similarity='jaccard') ``` [源码](https://githu
-
sklearn.utils.gen_even_slices
```python sklearn.utils.gen_even_slices(n, n_packs, *, n_samples=None) ``` [源码](https://github.
-
绘制L2正则化函数的岭系数图
岭回归是在这个例子中使用的估计器。左图中的每一种颜色表示系数向量的一个不同维度,表示为正则化参数的函数。右图表显示了解决方案的有多精确。此示例说明如何通过岭回归找到定义良好的解,以及正则化如何影响系数
-
sklearn.linear_model.ElasticNet
```python class sklearn.linear_model.ElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, norm
-
sklearn.datasets.load_diabetes
```python sklearn.datasets.load_diabetes(*, return_X_y=False, as_frame=False) ``` [[源码]](https:
-
sklearn.metrics.pairwise.additive_chi2_kernel
```python sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None) ``` [源码](https://github.com/
-
sklearn.utils.graph.single_source_shortest_path_length
```Python sklearn.utils.graph.single_source_shortest_path_length(graph, source, *, cutoff=None) ``
-
SGD: 惩罚
惩罚为L1、L2和弹性网的惩罚等于1的等高线。 所有这些都得到 [`SGDClassifier`](https://scikit-learn.org.cn/view/388.html) 和 [`SG
-
sklearn.linear_model.ElasticNetCV
```python class sklearn.linear_model.ElasticNetCV(*, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=N
-
sklearn.metrics.mean_absolute_error
```python sklearn.metrics.mean_absolute_error(y_true, y_pred, *, sample_weight=None, multioutput='u
-
sklearn.datasets.load_digits
```python sklearn.datasets.load_digits(*, n_class=10, return_X_y=False, as_frame=False) ``` [[源
-
sklearn.utils.sklearn.utils.graph_shortest_path.graph_shortest_path
```Python sklearn.utils.graph_shortest_path.graph_shortest_path() ``` 对正有向图或无向图执行最短路径图搜索。 |
-
多项式插值
这个例子演示了如何用岭回归用n_degree多项式逼近一个函数。具体而言,从n_samples 1D点 出发,建立Vandermonde矩阵就足够了,它是n个样本 x n_degree+1,其形式如下
-
sklearn.linear_model.Lars
```python class sklearn.linear_model.Lars(*, fit_intercept=True, verbose=False, normalize=True, prec