Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.naive_bayes.CategoricalNB
```python class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, fit_prior=True, class_prior=None)
-
sklearn.neighbors.NearestNeighbors
``` class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0, algorithm='auto', leaf_si
-
sklearn.pipeline.FeatureUnion
```python class sklearn.pipeline.FeatureUnion(transformer_list, *, n_jobs=None, transformer_weights=
-
sklearn.feature_extraction.CountVectorizer
```python class sklearn.feature_extraction.text.CountVectorizer(*, input='content', encoding='utf-8
-
sklearn.feature_selection.f_classif
```python sklearn.feature_selection.f_classif(X, y) ``` [[源码]](https://github.com/scikit-learn/
-
sklearn.impute.SimpleImputer
```python class sklearn.impute.SimpleImputer(*, missing_values=nan, strategy='mean', fill_value=None
-
sklearn.preprocessing.quantile_transform
```python sklearn.preprocessing.quantile_transform(X, *, axis=0, n_quantiles=1000, output_distribut
-
sklearn.svm.OneClassSVM
```python class sklearn.svm.OneClassSVM(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0
-
sklearn.tree.ExtraTreeRegressor
```python class sklearn.tree.ExtraTreeRegressor(*, criterion='mse', splitter='random', max_depth=Non
-
sklearn.utils.validation.has_fit_parameter
```python sklearn.utils.validation.has_fit_parameter(estimator, parameter) ``` [源码](https://gi
-
sklearn.inspection.partial_dependence
```python sklearn.inspection.partial_dependence(estimator, X, features, *, response_method='auto',
-
科学数据处理统计学习指南
**统计学习** 机器学习是一项越来越重要的技术,因为实验科学面临的数据集规模正在迅速增长。 它所解决的问题包括建立链接不同观察值的预测功能,对观察值进行分类或学习未标记数据集中的结构。 本教程将
-
sklearn.gaussian_process.RBF
```python class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05, 1
-
谱协聚类算法的一个示例
注意 单击[此处](https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html#sp
-
概率校准曲线
在进行分类时,不仅要预测类标签,还要预测相关概率。这种概率给了预测某种程度的信心。此示例演示了如何显示预测概率的校准效果,以及如何校准未校准的分类器。 实验是在一个二分类的人工数据集上进行的,该数据