Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.datasets.make_gaussian_quantiles
```python sklearn.datasets.make_gaussian_quantiles(*, mean=None, cov=1.0, n_samples=100, n_features
-
sklearn.decomposition.MiniBatchDictionaryLearning
```python class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, *, alpha=1, n_
-
sklearn.ensemble.ExtraTreesRegressor
```python class sklearn.ensemble.ExtraTreesRegressor(n_estimators=100, *, criterion='mse', max_depth
-
sklearn.model_selection.TimeSeriesSplit
```python class sklearn.model_selection.TimeSeriesSplit(n_splits=5, *, max_train_size=None) ```
-
sklearn.neighbors.KernelDensity
``` lass sklearn.neighbors.KernelDensity(*, bandwidth=1.0, algorithm='auto', kernel='gaussian', metr
-
sklearn.feature_selection.SelectKBest
```python class sklearn.feature_selection.SelectKBest(score_func=
, *, k=10) `` -
sklearn.preprocessing.QuantileTransformer
```python class sklearn.preprocessing.QuantileTransformer(*, n_quantiles=1000, output_distribution='
-
sklearn.utils.sparsefuncs.mean_variance_axis
```Python sklearn.utils.sparsefuncs.mean_variance_axis(X, axis) ``` [源码](https://github.com/sci
-
sklearn.gaussian_process.ConstantKernel
```python class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_b
-
不同度量的聚集聚类
演示不同度量对分层聚类的影响。 该示例的设计表明了选择不同度量标准的效果。它应用于波形,可视为高维向量。实际上,度量之间的差异通常在高维(特别是欧几里得度量和城市街道度量)中更为明显。 我
-
1.6 最近邻
[`sklearn.neighbors`](http://scikit-learn.jg.com.cn/lists/3.html#sklearn.neighbors%EF%BC%9A%E6%9C%80
-
Beta-divergence损失函数
一种比较各种Beta-divergence损失函数的图,它由 [`sklearn.decomposition.NMF`](https://scikit-learn.org.cn/view/609.ht
-
梯度提升回归
此示例演示了梯度提升从一组弱预测模型生成预测模型。梯度提升可以用于回归和分类问题。在这里,我们将训练一个模型来处理糖尿病回归任务。我们将从梯度提升回归器中得到结果, 这个梯度提升回归器是使用最小二乘损
-
Theil-Sen回归
在合成数据集上计算Theil-Sen回归。 有关回归器的更多信息,请参见 [Theil-Sen estimator: generalized-median-based estimator](http
-
使用带有交叉验证的网格搜索进行参数估计
此案例显示了如何通过交叉验证来优化分类器。交叉验证是通过在开发集上(development set)使用sklearn.model_selection.GridSearchCV对象完成的,开发集是已有