Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.base.BiclusterMixin
```python class sklearn.base.BiclusterMixin ``` [[源码]](https://github.com/scikit-learn/scikit-learn
-
1.4 支持向量机
支持向量机(SVMs)是一种用于[分类](http://scikit-learn.jg.com.cn/view/83.html#1.4.1%20%E5%88%86%E7%B1%BB)、[回归](htt
-
梯度提升正则
不同正则化策略对梯度提升效果的说明。这个例子来源于 Hastie et al 2009 [1]。 所使用的损失函数是二项偏差。通过收缩进行正则化(`learning_rate < 1.0`)大大提高
-
稀疏信号上的LASSO与弹性网
估计Lasso和弹性网络回归对手动产生的、被破坏的、加了噪声的稀疏信号进行建模。估计系数与真实值作了比较。  ``` [源码](https://github.com
-
sklearn.datasets.make_friedman3
```python sklearn.datasets.make_friedman3(n_samples=100, *, noise=0.0, random_state=None)[source]
-
sklearn.decomposition.LatentDirichletAllocation
```python class sklearn.decomposition.LatentDirichletAllocation(n_components=10, *, doc_topic_prior=
-
sklearn.ensemble.ExtraTreesClassifier
```python class sklearn.ensemble.ExtraTreesClassifier(n_estimators=100, *, criterion='gini', max_dep
-
sklearn.model_selection.StratifiedShuffleSplit
```python class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, *, test_size=None, train
-
sklearn.neighbors.KDTree
``` class sklearn.neighbors.KDTree(X, leaf_size=40, metric='minkowski', **kwargs) ``` KDTree用于快
-
sklearn.feature_selection.SelectPercentile
```python class sklearn.feature_selection.SelectPercentile(score_func=
, *, perc