Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
IsolationForest示例
一个使用 [`sklearn.ensemble.IsolationForest`](https://scikit-learn.org.cn/view/631.html)进行异常检测的例子。 Isol
-
基于多任务Lasso的联合特征选择
多任务Lasso允许拟合多元回归问题, 根据相同的任务共同执行特征选择。此示例模拟顺序测量,每个任务都是时间瞬间,相关特性随时间而变化。多任务的Lasso强制在一个时间点被选中的特征, 在所有时间点都
-
sklearn.cluster.FeatureAgglomeration
```python class sklearn.cluster.FeatureAgglomeration(n_clusters=2, *, affinity='euclidean', memory=
-
sklearn.linear_model.MultiTaskElasticNet
```Python class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=T
-
sklearn.metrics.pairwise.pairwise_kernels
```python sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric='linear', *, filter_params=Fa
-
sklearn.datasets.make_circles
```python sklearn.datasets.make_circles(n_samples=100, *, shuffle=True, noise=None, random_state=Non
-
sklearn.decomposition.DictionaryLearning
```python class sklearn.decomposition.DictionaryLearning(n_components=None, *, alpha=1, max_iter=10
-
sklearn.ensemble.AdaBoostClassifier
```python class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learni
-
sklearn.model_selection.RepeatedKFold
```python class sklearn.model_selection.RepeatedKFold(*, n_splits=5, n_repeats=10, random_state=Non
-
sklearn.preprocessing.Normalizer
```python class sklearn.preprocessing.Normalizer(norm='l2', *, copy=True) ``` 将样本分别归一化为单位范数。 具有至少一
-
sklearn.utils.sparsefuncs.incr_mean_variance_axis
```Python sklearn.utils.sparsefuncs.incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n
-
1.1 线性模型
下面是一组用于回归的方法, 其中目标值是特征的线性组合。在数学表示法中,如果$\hat{y}$表示预测值,那么有: $$\hat{y}(w, x)=w_0+w_1 x_1+\ldots+w_p x_
-
光谱聚类在图像分割中的应用
在此示例中,生成了具有连通圆的图像,并使用光谱聚类方法将圆分离。 在这种情况下,[光谱聚类](https://scikit-learn.org.cn/view/108.html#2.3.5.%20S
-
绘制投票分类器的决策边界
使用Iris数据集的两个特征绘制[投票分类器](https://scikit-learn.org.cn/view/654.html)的决策边界。 绘制toy数据集中第一个样本的类概率,由三个不同的分
-
用多项式Logistic+L1进行MNIST分类
这里,我们在MNIST数字分类任务的子集上拟合具有L1惩罚的多项式Logistic回归。为此,我们使用saga算法:当样本数明显大于特征数时,该算法是一个快速的求解器,并且能够精细地优化非光滑的目标函