Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.datasets.load_files
```python sklearn.datasets.load_files(container_path, *, description=None, categories=None, load_con
-
sklearn.metrics.pairwise.chi2_kernel
```python sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0) ``` [源码](https://github.com/sc
-
sklearn.utils.indexable
```Python sklearn.utils.indexable(*iterables) ``` 使数组可索引以进行交叉验证。 检查长度是否一致,通过将稀疏矩阵转换为csr,并将不可互用的对象转
-
绘制层次聚类的树状图
此示例使用聚合聚类和scipy中可用的树状图方法绘制了层次聚类对应的树状图。  ```py
-
Logistic函数
图中显示的是逻辑回归如何在这个综合数据集中使用logistic曲线将值分类为0或1,即第一类或第二类。  ``` [源码](https:/
-
sklearn.utils.metaestimators.if_delegate_has_method
```Python sklearn.utils.metaestimators.if_delegate_has_method(delegate) ``` 为委托给子估计器的方法创建一个装饰器
-
特征集聚
通过这些图像了解如何使用特征集聚将相似的特征合并在一起的。  ```python pri
-
L1-Logistic回归的正则化路径
基于iris数据集的二分类问题训练 L1-惩罚 Logistic回归模型。 模型由强正则化到最少正则化。模型的4个系数被收集并绘制成“正则化路径”:在图的左边(强正则化者),所有系数都精确地为0
-
sklearn.linear_model.Lasso
```python class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize=False, preco
-
sklearn.datasets.load_linnerud
```python sklearn.datasets.load_linnerud(*, return_X_y=False, as_frame=False) ``` [[源码]](https:
-
sklearn.metrics.pairwise.cosine_distances
```python sklearn.metrics.pairwise.cosine_distances(X, Y=None) ``` [源码](https://github.com/scik
-
sklearn.preprocessing.Binarizer
```python class sklearn.preprocessing.Binarizer(*, threshold=0.0, copy=True) ``` [[源码]](https://git