Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
混淆矩阵
本案例使用混淆矩阵评估鸢尾花数据集上分类器输出质量。对角线元素表示预测标签等于真实标签的点数,而非对角线元素则是分类器未正确标记的点。混淆矩阵的对角线值越高越好,表明正确的预测越多。 这些图按类
-
非线性支持向量机
本案例是使用带有RBF核的非线性SVC执行二分类任务。预测目标是输入的XOR数据。颜色图说明了SVC学习的决策功能。 (译者注:XOR是Exclusive-OR gate,是异或门的简称,是又数
-
sklearn.cluster.MeanShift
```python class sklearn.cluster.MeanShift(*, bandwidth=None, seeds=None, bin_seeding=False, min_bin
-
sklearn.linear_model.MultiTaskLassoCV
```python class sklearn.linear_model.MultiTaskLassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_
-
sklearn.metrics.pairwise.sigmoid_kernel
```python sklearn.metrics.pairwise.sigmoid_kernel(X, Y=None, gamma=None, coef0=1) ``` [源码](http
-
sklearn.datasets.make_friedman2
```python sklearn.datasets.make_friedman2(n_samples=100, *, noise=0.0, random_state=None) ``` [[源码]
-
sklearn.decomposition.IncrementalPCA
```python class sklearn.decomposition.IncrementalPCA(n_components=None, *, whiten=False, copy=True,
-
sklearn.ensemble.BaggingRegressor
```python class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10, *, max_samp
-
sklearn.model_selection.StratifiedKFold
```python class sklearn.model_selection.StratifiedKFold(n_splits=5, *, shuffle=False, random_state=N
-
sklearn.neighbors.DistanceMetric
```python class sklearn.neighbors.DistanceMetric ``` **DistanceMetric类。** 此类为快速距离度量功能提供统一的接口。 可以通过
-
sklearn.feature_selection.GenericUnivariateSelect
```python class sklearn.feature_selection.GenericUnivariateSelect(score_func=
, -
sklearn.preprocessing.PolynomialFeatures
```python class sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, includ
-
sklearn.utils.sparsefuncs.inplace_swap_row
```Python sklearn.utils.sparsefuncs.inplace_swap_row(X, m, n) ``` [源码](https://github.com/sciki
-
sklearn.gaussian_process.GaussianProcessRegressor
```python class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, *, alpha=1e-10, optim
-
基于K均值的颜色量化
对颐和园(中国)的图像执行像素级矢量量化(VQ),将显示该图像所需的颜色数量从96,615种独特颜色减少到64种,同时保持整体外观质量。 在本例中,像素在3D空间中表示,K-均值用于查找64种颜