Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.cluster.KMeans
```python class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300,
-
sklearn.linear_model.MultiTaskElasticNetCV
```python class sklearn.linear_model.MultiTaskElasticNetCV(*, l1_ratio=0.5, eps=0.001, n_alphas=100,
-
sklearn.metrics.pairwise.polynomial_kernel
```python sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1) ```
-
sklearn.datasets.make_classification
```python sklearn.datasets.make_classification(n_samples=100, n_features=20, *, n_informative=2, n_r
-
sklearn.decomposition.FactorAnalysis
```python class sklearn.decomposition.FactorAnalysis(n_components=None, *, tol=0.01, copy=True, max_
-
sklearn.ensemble.AdaBoostRegressor
```python class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, *, n_estimators=50, learning
-
sklearn.model_selection.RepeatedStratifiedKFold
```python class sklearn.model_selection.RepeatedStratifiedKFold(*, n_splits=5, n_repeats=10, random
-
sklearn.preprocessing.OneHotEncoder
```python class sklearn.preprocessing.OneHotEncoder(*, categories='auto', drop=None, sparse=True, dt
-
sklearn.utils.sparsefuncs.inplace_column_scale
```Python sklearn.utils.sparsefuncs.inplace_column_scale(X, scale) ``` [源码](https://github.com/
-
基于硬币图像的结构化区域分层聚类演示
基于区域层次聚类的二维图像分割计算。聚类在空间上受到约束,以使每个分割区域成为一体。  `
-
1.2 线性和二次判别分析
线性判别分析([`discriminant_analysis.LinearDiscriminantAnalysis`](https://scikit-learn.org.cn/view/618.htm
-
随机森林与多输出元估计器的比较
随机森林的多输出回归器和[multioutput.MultiOutputRegressor](https://scikit-learn.org.cn/view/91.html)元估计器的比较。 这个
-
在iris数据集上绘制多类SGD
在iris数据集上绘制多类SGD的决策边界。对应于三个one-versus-all(OVA)分类器的超平面用虚线表示。 ![](/upload/558699d4cf7d6a5f10e561674
-
绘制交叉验证的预测
本示例说明了如何使用cross_val_predict来可视化预测中的错误。 输入: ```python from sklearn import datasets from sklea
-
sklearn.cluster.MiniBatchKMeans
```python class sklearn.cluster.MiniBatchKMeans(n_clusters=8, *, init='k-means++', max_iter=100, bat