Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.feature_extraction.TfidfTransformer
```python class sklearn.feature_extraction.text.TfidfTransformer(*, norm='l2', use_idf=True, smooth
-
sklearn.feature_selection.mutual_info_classif
```python sklearn.feature_selection.mutual_info_classif(X, y, *, discrete_features='auto', n_neighb
-
sklearn.preprocessing.scale
```python sklearn.preprocessing.scale(X, *, axis=0, with_mean=True, with_std=True, copy=True) ```
-
sklearn.impute.IterativeImputer
```python class sklearn.impute.IterativeImputer(estimator=None, *, missing_values=nan, sample_poste
-
sklearn.random_projection.SparseRandomProjection
``` class sklearn.random_projection.SparseRandomProjection(n_components='auto', *, density='auto', e
-
sklearn.semi_supervised.LabelPropagation
```python class sklearn.semi_supervised.LabelPropagation(kernel='rbf', *, gamma=20, n_neighbors=7,
-
sklearn.svm.SVR
```python class sklearn.svm.SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1
-
sklearn.tree.export_text
```python sklearn.tree.export_text(decision_tree, *, feature_names=None, max_depth=10, spacing=3, d
-
sklearn.utils.parallel_backend
```python sklearn.utils.parallel_backend(backend, n_jobs=-1, inner_max_num_threads=None, **backend_
-
sklearn.model_selection.fit_grid_point
**警告弃用** ```python sklearn.model_selection.fit_grid_point(X, y, estimator, parameters, train, te
-
sklearn.inspection.PartialDependenceDisplay
部分依赖图(PDP)可视化。 建议使用 [`plot_partial_dependence`](https://scikit-learn.org.cn/view/851.html)创建一个 [`Pa
-
sklearn.isotonic.check_increasing
```python sklearn.isotonic.check_increasing(x, y) ``` [[源码\]](https://github.com/scikit-learn/s
-
选择适合的估算器
解决机器学习问题最困难的部分通常是为工作找到合适的估算器。 不同的估算器更适合于不同类型的数据和不同问题。 下面的流程图旨在为用户提供一些粗略的指导,以指导他们如何处理有关哪些估算器尝试使
-
sklearn.gaussian_process.Sum
```python class sklearn.gaussian_process.kernels.Sum(k1, k2) ``` [[源码]](https://github.com/scik
-
sklearn.decomposition.KernelPCA
``` class sklearn.decomposition.KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree