Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.naive_bayes.ComplementNB
```python class sklearn.naive_bayes.ComplementNB(*,alpha = 1.0,fit_prior = True,class_prior = None,
-
sklearn.neighbors.NeighborhoodComponentsAnalysis
``` class sklearn.neighbors.NeighborhoodComponentsAnalysis(n_components=None, *, init='auto', warm_s
-
sklearn.neural_network.BernoulliRB
```python class sklearn.neural_network.BernoulliRBM(n_components=256, *, learning_rate=0.1, batch_s
-
sklearn.pipeline.Pipeline
```python class sklearn.pipeline.Pipeline(steps, *, memory=None, verbose=False) ``` [[源码](https://g
-
sklearn.feature_extraction.HashingVectorizer
```python class sklearn.feature_extraction.text.HashingVectorizer(*, input='content', encoding='utf
-
sklearn.feature_selection.f_regression
```python sklearn.feature_selection.f_regression(X, y, *, center=True) ``` [[源码]](https://githu
-
sklearn.preprocessing.robust_scale
```python sklearn.preprocessing.robust_scale(X, *, axis=0, with_centering=True, with_scaling=True,
-
sklearn.impute.MissingIndicator
```python class sklearn.impute.MissingIndicator(*, missing_values=nan, features='missing-only', spa
-
sklearn.random_projection.GaussianRandomProjection
``` class sklearn.random_projection.GaussianRandomProjection(n_components='auto', *, eps=0.1, random
-
sklearn.svm.SVC
```python class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinkin
-
sklearn.tree.export_graphviz
```python sklearn.tree.export_graphviz(decision_tree, out_file=None, *, max_depth=None, feature_nam
-
sklearn.utils.all_estimators
```python sklearn.utils.all_estimators(type_filter=None) ``` [源码](https://github.com/scikit-learn/s
-
sklearn.inspection.permutation_importance
```python sklearn.inspection.permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5, n
-
sklearn.isotonic.IsotonicRegression
阅读更多内容[用户指南](http://scikit-learn.jg.com.cn/view/103.html). *新版本0.13。* | 参数 | 说明
-
处理文本数据
本指南的目的是在一项实际任务上探索一些主要的scikit学习工具:分析有关二十个不同主题的文本文档(新闻组帖子)的集合。 在本节中,我们将看到如何: - 加载文件内容和类别 - 提取适合机器学习