Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.decomposition.dict_learning
```python sklearn.decomposition.dict_learning(X, n_components, *, alpha, max_iter=100, tol=1e-08, m
-
sklearn.ensemble.RandomTreesEmbedding
```python class sklearn.ensemble.RandomTreesEmbedding(n_estimators=100, *, max_depth=5, min_samples_
-
sklearn.model_selection.RandomizedSearchCV
```python class sklearn.model_selection.RandomizedSearchCV(estimator,param_distributions,*,n_iter =
-
sklearn.exceptionsDataConversionWarning
```python class sklearn.exceptions.DataConversionWarning ``` [[源码]](https://github.com/scikit-l
-
sklearn.feature_extraction.img_to_graph
```python sklearn.feature_extraction.image.img_to_graph(img, *, mask=None, return_as=
- sklearn.neighbors.RadiusNeighborsRegressor
``` class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, *, weights='uniform', algorithm='au- sklearn.feature_selection.RFECV
```python class sklearn.feature_selection.RFECV(estimator, *, step=1, min_features_to_select=1, cv=N- sklearn.preprocessing.maxabs_scale
```python sklearn.preprocessing.maxabs_scale(X, *, axis=0, copy=True) ``` [[源码]](https://github- sklearn.svm.LinearSVR
```python class sklearn.svm.LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, loss='epsilon_insensitive',- sklearn.tree.DecisionTreeClassifier
```python class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=- sklearn.utils.validation.check_memory
```python sklearn.utils.validation.check_memory(memory) ``` [源码](https://github.com/scikit-lear- sklearn.gaussian_process.Matern
```python class sklearn.gaussian_process.kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-0- K-Means和MiniBatchKMeans聚类算法的比较
我们想比较一下MiniBatchKMeans和KMeans的性能:MiniBatchKMeans更快,但给出的结果略有不同(看 [Mini Batch K-Means](https://scikit-- 1.12 多类和多标签算法
> **警告** scikit-learn中的所有分类器都可以开箱即用进行多分类。除非您想尝试不同的多类策略,否则无需使用[`sklearn.multiclass`](http://scikit-le- 2.4. 双聚类
可以使用`sklearn.cluster.bicluster`模块进行Biclustering(双聚类) 。 双聚类算法同时对数据矩阵的行和列进行聚类。而这些行列的聚类称之为双向簇(bicluster - sklearn.neighbors.RadiusNeighborsRegressor