Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.linear_model.MultiTaskLasso
```python class sklearn.linear_model.MultiTaskLasso(alpha=1.0, *, fit_intercept=True, normalize=Fal
-
sklearn.metrics.pairwise.rbf_kernel
```python sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=None) ``` [源码](https://github.co
-
sklearn.datasets.make_friedman1
```python sklearn.datasets.make_friedman1(n_samples=100, n_features=10, *, noise=0.0, random_state=N
-
sklearn.decomposition.FastICA
```python class sklearn.decomposition.FastICA(n_components=None, *, algorithm='parallel', whiten=Tr
-
sklearn.ensemble.BaggingClassifier
```python class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, *, max_sam
-
sklearn.model_selection.ShuffleSplit
```python class sklearn.model_selection.ShuffleSplit(n_splits=10, *, test_size=None, train_size=Non
-
sklearn.neighbors.BallTree
```python class sklearn.neighbors.BallTree(X, leaf_size=40, metric='minkowski', **kwargs) ``` BallT
-
sklearn.preprocessing.OrdinalEncoder
```python class sklearn.preprocessing.OrdinalEncoder(*, categories='auto', dtype=
- sklearn.utils.sparsefuncs.inplace_row_scale
```Python sklearn.utils.sparsefuncs.inplace_row_scale(X, scale) ``` [源码](https://github.com/sci- sklearn.gaussian_process.GaussianProcessClassifier
```python class sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, *, optimizer='fmin_l- DBSCAN聚类算法的演示
发现高密度的核心样本并从中膨胀聚类。  ```python Estimated numb- sklearn.base.BaseEstimator
```python class sklearn.base.BaseEstimator ``` [[源码]](https://github.com/scikit-learn/scikit-le- 1.3 内核岭回归
内核岭回归(Kernel ridge regression (KRR)) [M2012] , 是组合使用了内核技巧和岭回归(进行了l2正则化的最小二乘法)。因此,它所学习到的在空间中不同的线性函数是由- 梯度提升回归的预测区间
此示例演示如何使用分位数回归来创建预测区间。  ```python import num- 正交匹配追踪
用正交匹配追踪法从带噪测量信号中提取稀疏信号。  ```python print(__doc - sklearn.utils.sparsefuncs.inplace_row_scale