Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.metrics.pairwise.kernel_metrics
```python sklearn.metrics.pairwise.kernel_metrics() ``` [源码](https://github.com/scikit-learn/sc
-
sklearn.model_selection.LeaveOneGroupOut
```python class sklearn.model_selection.LeaveOneGroupOut ``` [[源码](https://github.com/scikit-le
-
sklearn.preprocessing.LabelBinarizer
```python class sklearn.preprocessing.LabelBinarizer(*, neg_label=0, pos_label=1, sparse_output=Fals
-
sklearn.utils.resample
```python sklearn.utils.resample(*arrays, **options) ``` [源码](https://github.com/scikit-learn/sciki
-
亲密传播聚类算法的例子
> 参考:Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Scienc
-
AdaBoost决策树回归
使用AdaBoost提升决策树。在一维正弦数据集上的R2[1]算法,具有少量高斯噪声。299个增强(300个决策树)与一个决策树回归器进行比较。随着提升次数的增加,回归器可以适应更多的细节。 > [
-
稀疏示例:仅适合特征1和2
糖尿病数据集的特征1和2如下所示。它说明,虽然特征2在整个模型上有很强的系数,但与仅仅特征1相比,它并没有给我们多少关于y的看法。  ``` [[源码]](https://gi
-
sklearn.metrics.pairwise.laplacian_kernel
```python sklearn.metrics.pairwise.laplacian_kernel(X, Y=None, gamma=None) ``` [源码](https://git
-
sklearn.model_selection.LeavePGroupsOut
```python class sklearn.model_selection.LeavePGroupsOut(n_groups) ``` [[源码](https://github.com/scik
-
sklearn.preprocessing.LabelEncoder
```python class sklearn.preprocessing.LabelEncoder ``` [[源码]](https://github.com/scikit-learn/sciki
-
sklearn.utils._safe_indexing
```python sklearn.utils._safe_indexing(X, indices, *, axis=0 ``` [源码](https://github.com/sciki
-
带结构和无结构的凝聚聚类
此示例显示了强制设置连接图以捕获数据中的本地结构的效果。这张图就是20个最近邻的图。 可以看到强制连接的两个结果。第一个有连接矩阵的聚类要快的多。 第二,当使用一个连接矩阵时,单个、平均和