使用标签传播学习复杂的结构¶
LabelPropagation示例学习一个复杂的内部结构以演示“流形学习”。 外圈应标记为“红色”,内圈应标记为“蓝色”。 由于两个标签组均位于各自不同的形状内,因此可以看到标签在圆周围正确传播。
print(__doc__)
# 作者: Clay Woolam <clay@woolam.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# 执照: BSD
import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import LabelSpreading
from sklearn.datasets import make_circles
# 创建带有内圈的环型数据集
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = np.full(n_samples, -1.)
labels[0] = outer
labels[-1] = inner
# #############################################################################
# 使用LabelSpreading学习
label_spread = LabelSpreading(kernel='knn', alpha=0.8)
label_spread.fit(X, labels)
# #############################################################################
# 绘制输出标签
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy',
marker='s', lw=0, label="outer labeled", s=10)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c',
marker='s', lw=0, label='inner labeled', s=10)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange',
marker='.', label='unlabeled')
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Raw data (2 classes=outer and inner)")
plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy',
marker='s', lw=0, s=10, label="outer learned")
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c',
marker='s', lw=0, s=10, label="inner learned")
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Labels learned with Label Spreading (KNN)")
plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()
输出:
脚本的总运行时间:(0分钟0.154秒)