Libsvm GUI

Libsvm的一个简单的图形前端主要用于教学目的。您可以逐点创建数据点 点击 并可视化由不同内核和参数设置引起的决策区域。

若要创建正示例,请单击鼠标左键;若要创建负面示例,请单击右侧按钮。

如果所有示例都来自同一个类,则使用单类支持向量机。

print(__doc__)

# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
try:
    from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk
except ImportError:
    # NavigationToolbar2TkAgg was deprecated in matplotlib 2.2
    from matplotlib.backends.backend_tkagg import (
        NavigationToolbar2TkAgg as NavigationToolbar2Tk
    )
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import sys
import numpy as np
import tkinter as Tk

from sklearn import svm
from sklearn.datasets import dump_svmlight_file

y_min, y_max = -5050
x_min, x_max = -5050


class Model:
    """The Model which hold the data. It implements the
    observable in the observer pattern and notifies the
    registered observers on change event.
    """


    def __init__(self):
        self.observers = []
        self.surface = None
        self.data = []
        self.cls = None
        self.surface_type = 0

    def changed(self, event):
        """Notify the observers. """
        for observer in self.observers:
            observer.update(event, self)

    def add_observer(self, observer):
        """Register an observer. """
        self.observers.append(observer)

    def set_surface(self, surface):
        self.surface = surface

    def dump_svmlight_file(self, file):
        data = np.array(self.data)
        X = data[:, 0:2]
        y = data[:, 2]
        dump_svmlight_file(X, y, file)


class Controller:
    def __init__(self, model):
        self.model = model
        self.kernel = Tk.IntVar()
        self.surface_type = Tk.IntVar()
        # Whether or not a model has been fitted
        self.fitted = False

    def fit(self):
        print("fit the model")
        train = np.array(self.model.data)
        X = train[:, 0:2]
        y = train[:, 2]

        C = float(self.complexity.get())
        gamma = float(self.gamma.get())
        coef0 = float(self.coef0.get())
        degree = int(self.degree.get())
        kernel_map = {0"linear"1"rbf"2"poly"}
        if len(np.unique(y)) == 1:
            clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
                                  gamma=gamma, coef0=coef0, degree=degree)
            clf.fit(X)
        else:
            clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
                          gamma=gamma, coef0=coef0, degree=degree)
            clf.fit(X, y)
        if hasattr(clf, 'score'):
            print("Accuracy:", clf.score(X, y) * 100)
        X1, X2, Z = self.decision_surface(clf)
        self.model.clf = clf
        self.model.set_surface((X1, X2, Z))
        self.model.surface_type = self.surface_type.get()
        self.fitted = True
        self.model.changed("surface")

    def decision_surface(self, cls):
        delta = 1
        x = np.arange(x_min, x_max + delta, delta)
        y = np.arange(y_min, y_max + delta, delta)
        X1, X2 = np.meshgrid(x, y)
        Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
        Z = Z.reshape(X1.shape)
        return X1, X2, Z

    def clear_data(self):
        self.model.data = []
        self.fitted = False
        self.model.changed("clear")

    def add_example(self, x, y, label):
        self.model.data.append((x, y, label))
        self.model.changed("example_added")

        # update decision surface if already fitted.
        self.refit()

    def refit(self):
        """Refit the model if already fitted. """
        if self.fitted:
            self.fit()


class View:
    """Test docstring. """
    def __init__(self, root, controller):
        f = Figure()
        ax = f.add_subplot(111)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim((x_min, x_max))
        ax.set_ylim((y_min, y_max))
        canvas = FigureCanvasTkAgg(f, master=root)
        try:
            canvas.draw()
        except AttributeError:
            # support for matplotlib (1.*)
            canvas.show()
        canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas.mpl_connect('button_press_event', self.onclick)
        toolbar = NavigationToolbar2Tk(canvas, root)
        toolbar.update()
        self.controllbar = ControllBar(root, controller)
        self.f = f
        self.ax = ax
        self.canvas = canvas
        self.controller = controller
        self.contours = []
        self.c_labels = None
        self.plot_kernels()

    def plot_kernels(self):
        self.ax.text(-50-60"Linear: $u^T v$")
        self.ax.text(-20-60r"RBF: $\exp (-\gamma \| u-v \|^2)$")
        self.ax.text(10-60r"Poly: $(\gamma \, u^T v + r)^d$")

    def onclick(self, event):
        if event.xdata and event.ydata:
            if event.button == 1:
                self.controller.add_example(event.xdata, event.ydata, 1)
            elif event.button == 3:
                self.controller.add_example(event.xdata, event.ydata, -1)

    def update_example(self, model, idx):
        x, y, l = model.data[idx]
        if l == 1:
            color = 'w'
        elif l == -1:
            color = 'k'
        self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

    def update(self, event, model):
        if event == "examples_loaded":
            for i in range(len(model.data)):
                self.update_example(model, i)

        if event == "example_added":
            self.update_example(model, -1)

        if event == "clear":
            self.ax.clear()
            self.ax.set_xticks([])
            self.ax.set_yticks([])
            self.contours = []
            self.c_labels = None
            self.plot_kernels()

        if event == "surface":
            self.remove_surface()
            self.plot_support_vectors(model.clf.support_vectors_)
            self.plot_decision_surface(model.surface, model.surface_type)

        self.canvas.draw()

    def remove_surface(self):
        """Remove old decision surface."""
        if len(self.contours) > 0:
            for contour in self.contours:
                if isinstance(contour, ContourSet):
                    for lineset in contour.collections:
                        lineset.remove()
                else:
                    contour.remove()
            self.contours = []

    def plot_support_vectors(self, support_vectors):
        """Plot the support vectors by placing circles over the
        corresponding data points and adds the circle collection
        to the contours list."""

        cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],
                             s=80, edgecolors="k", facecolors="none")
        self.contours.append(cs)

    def plot_decision_surface(self, surface, type):
        X1, X2, Z = surface
        if type == 0:
            levels = [-1.00.01.0]
            linestyles = ['dashed''solid''dashed']
            colors = 'k'
            self.contours.append(self.ax.contour(X1, X2, Z, levels,
                                                 colors=colors,
                                                 linestyles=linestyles))
        elif type == 1:
            self.contours.append(self.ax.contourf(X1, X2, Z, 10,
                                                  cmap=matplotlib.cm.bone,
                                                  origin='lower', alpha=0.85))
            self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k',
                                                 linestyles=['solid']))
        else:
            raise ValueError("surface type unknown")


class ControllBar:
    def __init__(self, root, controller):
        fm = Tk.Frame(root)
        kernel_group = Tk.Frame(fm)
        Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,
                       value=0, command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,
                       value=1, command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,
                       value=2, command=controller.refit).pack(anchor=Tk.W)
        kernel_group.pack(side=Tk.LEFT)

        valbox = Tk.Frame(fm)
        controller.complexity = Tk.StringVar()
        controller.complexity.set("1.0")
        c = Tk.Frame(valbox)
        Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(c, width=6, textvariable=controller.complexity).pack(
            side=Tk.LEFT)
        c.pack()

        controller.gamma = Tk.StringVar()
        controller.gamma.set("0.01")
        g = Tk.Frame(valbox)
        Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
        g.pack()

        controller.degree = Tk.StringVar()
        controller.degree.set("3")
        d = Tk.Frame(valbox)
        Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
        d.pack()

        controller.coef0 = Tk.StringVar()
        controller.coef0.set("0")
        r = Tk.Frame(valbox)
        Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
        r.pack()
        valbox.pack(side=Tk.LEFT)

        cmap_group = Tk.Frame(fm)
        Tk.Radiobutton(cmap_group, text="Hyperplanes",
                       variable=controller.surface_type, value=0,
                       command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(cmap_group, text="Surface",
                       variable=controller.surface_type, value=1,
                       command=controller.refit).pack(anchor=Tk.W)

        cmap_group.pack(side=Tk.LEFT)

        train_button = Tk.Button(fm, text='Fit', width=5,
                                 command=controller.fit)
        train_button.pack()
        fm.pack(side=Tk.LEFT)
        Tk.Button(fm, text='Clear', width=5,
                  command=controller.clear_data).pack(side=Tk.LEFT)


def get_parser():
    from optparse import OptionParser
    op = OptionParser()
    op.add_option("--output",
                  action="store", type="str", dest="output",
                  help="Path where to dump data.")
    return op


def main(argv):
    op = get_parser()
    opts, args = op.parse_args(argv[1:])
    root = Tk.Tk()
    model = Model()
    controller = Controller(model)
    root.wm_title("Scikit-learn Libsvm GUI")
    view = View(root, controller)
    model.add_observer(view)
    Tk.mainloop()

    if opts.output:
        model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
    main(sys.argv)

脚本的总运行时间:(0分0.000秒)

Download Python source code: svm_gui.py

Download Jupyter notebook: svm_gui.ipynb