Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.experimental.enable_iterative_imputer
激活迭代输入。 这些评估器的API和结果可能会在没有任何弃用周期的情况下发生变化。 动态导入该文件将设置[`sklearn.impute.IterativeImputer`](https:
-
sklearn.multiclass.OutputCodeClassifier
```python class sklearn.multiclass.OutputCodeClassifier(estimator, *, code_size=1.5, random_state=No
-
sklearn.multioutput.RegressorChain
```python class sklearn.multioutput.RegressorChain(base_estimator, *, order=None, cv=None, random_st
-
sklearn.naive_bayes.MultinomialNB
```python class sklearn.naive_bayes.MultinomialNB(*, alpha=1.0, fit_prior=True, class_prior=None)
-
sklearn.neighbors.radius_neighbors_graph
``` sklearn.neighbors.radius_neighbors_graph(X, radius, *, mode='connectivity', metric='minkowski',
-
sklearn.neural_network.MLPRegressor
```python class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activation='relu', *
-
sklearn.pipeline.make_union
```python sklearn.pipeline.make_union(*transformers, **kwargs) ``` [[源码](https://github.com/sci
-
sklearn.feature_extraction.TfidfVectorizer
```python class sklearn.feature_extraction.text.TfidfVectorizer(*, input='content', encoding='utf-8
-
sklearn.feature_selection.mutual_info_regression
```python sklearn.feature_selection.mutual_info_regression(X, y, *, discrete_features='auto', n_nei
-
sklearn.preprocessing.power_transform
```python sklearn.preprocessing.power_transform(X, method='yeo-johnson', *, standardize=True, copy=
-
sklearn.impute.KNNImputer
```python class sklearn.impute.KNNImputer(*, missing_values=nan, n_neighbors=5, weights='uniform',
-
sklearn.random_projection.johnson_lindenstrauss_min_dim
``` sklearn.random_projection.johnson_lindenstrauss_min_dim(n_samples, *, eps=0.1) ``` [[源码\]](
-
sklearn.semi_supervised.LabelSpreading
```python class sklearn.semi_supervised.LabelSpreading(kernel='rbf', *, gamma=20, n_neighbors=7, al
-
sklearn.svm.l1_min_c
```python sklearn.svm.l1_min_c(X, y, *, loss='squared_hinge', fit_intercept=True, intercept_scaling=
-
sklearn.tree.plot_tree
```python sklearn.tree.plot_tree(decision_tree, *, max_depth=None, feature_names=None, class_names=N