带有自定义核函数的支持向量机

在这个案例中,我们简单使用支持向量机对样本进行分类,并绘制决策面和支持向量。

输入:

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

# 导入数据以便处理
iris = datasets.load_iris()
X = iris.data[:, :2
# 我们仅仅使用前两个特征,我们可以通过使用二维数据集来避免复杂的切片
Y = iris.target


def my_kernel(X, Y):
    """
    我们创建一个自定义的核函数:

                 (2  0)
    k(X, Y) = X  (    ) Y.T
                 (0  1)
    """

    M = np.array([[20], [01.0]])
    return np.dot(np.dot(X, M), Y.T)


h = .02  # 设置网格中的步长

# 我们创建一个SVM实例并拟合数据。
clf = svm.SVC(kernel=my_kernel)
clf.fit(X, Y)

# 绘制决策边界。为此,我们将为网格[x_min,x_max] x [y_min,y_max]中的每个点分配颜色。
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# 将结果放入颜色图
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# 绘制训练点
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolors='k')
plt.title('3-Class classification using Support Vector Machine with custom'
          ' kernel')
plt.axis('tight')
plt.show()

脚本的总运行时间:0分钟0.196秒