Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.metrics.mean_squared_error
```python sklearn.metrics.mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='un
-
sklearn.metrics.mean_squared_log_error
```python sklearn.metrics.mean_squared_log_error(y_true, y_pred, *, sample_weight=None, multioutput
-
sklearn.metrics.median_absolute_error
```python sklearn.metrics.median_absolute_error(y_true, y_pred, *, multioutput='uniform_average')
-
sklearn.metrics.r2_score
```python sklearn.metrics.r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_aver
-
sklearn.utils.arrayfuncs.min_pos
``` sklearn.utils.arrayfuncs.min_pos() ``` 在正值上找到数组的最小值 如果所有值都不是正的,则返回一个最大的值
-
sklearn.metrics.mean_poisson_deviance
```python sklearn.metrics.mean_poisson_deviance(y_true, y_pred, *, sample_weight=None) ``` [源码]
-
sklearn.utils.as_float_array
```python sklearn.utils.as_float_array(X, *, copy=True, force_all_finite=True) ``` [源码](https:/
-
sklearn.metrics.mean_gamma_deviance
```python sklearn.metrics.mean_gamma_deviance(y_true, y_pred, *, sample_weight=None) ``` [源码](h
-
sklearn.utils.assert_all_finite
```Python sklearn.utils.assert_all_finite(X, *, allow_nan=False) ``` [源码](https://github.com/s
-
sklearn.metrics.mean_tweedie_deviance
```python sklearn.metrics.mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0) ```
-
sklearn.utils.Bunch
```Python sklearn.utils.Bunch(**kwargs) ``` [源码](https://github.com/scikit-learn/scikit-learn/b
-
sklearn.metrics.coverage_error
```python sklearn.metrics.coverage_error(y_true, y_score, *, sample_weight=None) ``` 覆盖误差测量
-
sklearn.utils.check_X_y
```Python sklearn.utils.check_X_y(X, y, accept_sparse=False, *, accept_large_sparse=True, dtype='nu
-
sklearn.metrics.label_ranking_average_precision_score
```python sklearn.metrics.label_ranking_average_precision_score(y_true, y_score, *, sample_weight=N
-
sklearn.utils.check_array
```python sklearn.utils.check_array(array, accept_sparse=False, *, accept_large_sparse=True, dtype=