Search
Please activate JavaScript to enable the search functionality.
From here you can search these documents. Enter your search words into the box below and click "search". Note that the search function will automatically search for all of the words. Pages containing fewer words won't appear in the result list.
Search Results
Search finished, found 840 page(s) matching the search query.
-
sklearn.utils.multiclass.type_of_target
```Python sklearn.utils.multiclass.type_of_target(y) ``` [源码](https://github.com/scikit-learn/s
-
均值移位聚类算法的一个例子
> 参考: > > Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space anal
-
Logistic回归三分类器
下面显示的是一个逻辑回归分类器,在[iris](https://en.wikipedia.org/wiki/Iris_flower_data_set)数据集的前两个维度(萼片长度和宽度)上的决策边界。
-
sklearn.linear_model.LassoCV
```python class sklearn.linear_model.LassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=
-
sklearn.datasets.load_sample_image
```python sklearn.datasets.load_sample_image(image_name) ``` [[源码]](https://github.com/scikit-l
-
sklearn.metrics.pairwise.distance_metrics
```python sklearn.metrics.pairwise.distance_metrics() ``` [源码](https://github.com/scikit-learn/
-
sklearn.model_selection.GroupKFold
```python class sklearn.model_selection.GroupKFold(n_splits=5) ``` [[源码](https://github.com/sci
-
sklearn.preprocessing.KBinsDiscretizer
```python class sklearn.preprocessing.KBinsDiscretizer(n_bins=5, *, encode='onehot', strategy='quant
-
sklearn.utils.multiclass.is_multilabel
```python sklearn.utils.multiclass.is_multilabel(y) ``` [源码](https://github.com/scikit-learn/sc
-
k-均值假设的证明
此示例旨在说明k-means将产生不直观的、可能是意外的聚类的情况。在前三幅图中,输入的数据不符合一些隐含的假设,即k均值生成,因此产生了不理想的聚类。在最后一幅图中,k-means表示尽管大小不均匀
-
SGD:加权样本
绘制加权数据集的决策函数, 其中点的大小与其权重成正比。  ```python print(
-
sklearn.linear_model.LassoLars
```python class sklearn.linear_model.LassoLars(alpha=1.0, *, fit_intercept=True, verbose=False, norm
-
sklearn.datasets.load_sample_images
```python sklearn.datasets.load_sample_images() ``` [[源码]](https://github.com/scikit-learn/scik
-
sklearn.metrics.pairwise.euclidean_distances
```python sklearn.metrics.pairwise.euclidean_distances(X, Y=None, *, Y_norm_squared=None, squared=F
-
sklearn.model_selection.GroupShuffleSplit
```python class sklearn.model_selection.GroupShuffleSplit(n_splits=5, *, test_size=None, train_size=