递归特征消除

这是一个数字分类任务中像素相关的递归特征消除的例子。

注意:还请参阅带交叉验证的递归特征消除

print(__doc__)

from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt

# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target

# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

# Plot pixel ranking
plt.matshow(ranking, cmap=plt.cm.Blues)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()

脚本的总运行时间:(0分4.507秒)

Download Python source code: plot_rfe_digits.py

Download Jupyter notebook: plot_rfe_digits.ipynb